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Abstract

In machine learning, multiple instance learning is a method evolved
from supervised learning algorithms, which defines a “bag” as a col-
lection of multiple examples with a wide range of applications. In
this paper, we propose a novel deep multiple instance learning model
for medical image analysis, called triple-kernel gated attention-based
multiple instance learning with contrastive learning. It can be used
to overcome the limitations of the existing multiple instance learning
approaches to medical image analysis. Our model consists of four steps.
i) Extracting the representations by a simple convolutional neural net-
work using contrastive learning for training. ii) Using three different
kernel functions to produce the importance of each instance from the
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entire image and forming an attention map. iii) Based on the atten-
tion map, aggregating the entire image together by attention-based
MIL pooling. iv) Feeding the results to the classifier for prediction.
The results on different datasets demonstrate that the proposed model
outperforms state-of-the-art methods on binary and weakly supervised
classification tasks. It can provide more efficient classification results
for various disease models and additional explanatory information.

Keywords: Deep Learning, Multiple Instance Learning, Medical Image
Analysis

1 Introduction

In machine learning, image classification typically assumes that all images
are labeled with different classes. However, human pathological images may
exhibit various disease characteristics in actual medical procedures, so we can-
not simply assign a unique class to the whole image. This typical problem is
called multiple instance learning (MIL), which was proposed by Dietterich et
al. in 1997 [1]. It is a learning problem with a bag with multiple instances as
the training unit. As most medical images have relatively high resolution and
weakly labeled small datasets, the MIL method is a common method for med-
ical image analysis [2]. Several research has been conducted in which the MIL
method is applied to medical problems, such as drug activity prediction prob-
lem [1], dementia classification in brain MRI [3], and computer-aided detection
(CAD) [4].

In recent years, with the rapid development of deep learning, the combi-
nation of MIL and neural network models has become a development trend
[5]. Xu et al. first used a deep neural network as the feature extractor with
the MIL algorithm as the classifier for medical image analysis [6]. Yousefi et
al. proposed a framework to combine the CNN-based MIL with random forest
to improve the performance for mass detection on breast data [7]. However,
these researches are more of an attempt to combine CNN and MIL for med-
ical image analysis that do not fully explain the underlying logic. Ilse et al.
presented an attention-based strategy that improves the interpretability of
MIL while also enhancing its flexibility [8]. Since then, the study of attention-
based MIL has attracted much attention. Yao et al. proposed attention-based
deep MIL for whole slide imaging classification [9]. In [10], an attention-based
time-incremental CNN was proposed for achieving both spatial and temporal
fusion of information from electrocardiogram for multi-class detection. Han
et al. extended the attention-based deep MIL method to three-dimensional
space for accurate screening of COVID-19 [11]. However, both methods require
more data for their model training. In the case of some relatively rare disease,
scarcity in the data present a challenge to the research. Rymarczyk et al. pre-
sented a kernel function on improving the performance of attention-based deep
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MIL model on kinds of dataset [12]. However, the performance of their model
is not stable with a reasonable explanation.

1.1 Motivations

Although some of the studies mentioned above have made significant progress
in MIL methods, they all have shortcomings. The motivation of this paper is
to overcome three existing limitations.

1. Diseased cells only occupy a part of the whole image for medical images. For
example, breast cancer cells in the early stage usually cover less than five
percent of the entire mammogram, which leads to a high imbalance in the
proportion of examples in the positive bag, leading to misclassification of
these positive bags by the model. In addition, the maximum pooling method
is widely used in deep learning, and its characteristic of retaining only the
largest value may lead to the lack of key information. In addition, due to
the small data size of the medical image and under weak supervision, the
model easily loses key features due to overfitting issues.

2. The current models commonly extract features from the given patch by
CNN, such as ROI, because training traditional windows sliding feature
extractors is very time-consuming and inefficient for high-resolution medical
images. However, this simplified learning scheme may not obtain optimal
features when classifying medical images.

3. The training process of the deep learning model is more like a black box, and
the interpretation of the intermediate process is not outstanding. However,
due to the particularity of medical images, doctors need more information
to support subsequent diagnoses when using the model. Therefore, we need
to explain the intermediate process further.

1.2 Contributions

This paper proposes a novel deep MIL model for medical image analysis called
Triple-kernel Gated Attention-based MIL with contrastive learning (TGA-
MIL). It is used to overcome the limitations of the existing MIL approach. The
model consists of four steps. First, extracting the representations by a simple
CNN model using contrastive learning for training. Second, using three dif-
ferent kernel functions to produce the importance of each instance from the
entire image and form an attention map. Third, the attention map aggregates
the entire image together by attention-based MIL pooling. Finally, feeding
the results to the classifier for prediction. We use the TGA-MIL method on
MNIST, two classical MIL datasets, and various medical image datasets, i.e.,
USBC breast cancer, colon cancer, and DDSM dataset, to test and show that it
can be used for binary, multi-class, and weakly supervised classification tasks.
This paper makes the following key contributions:

1. We propose a general framework called TGA-MIL for MIL problems, which
combines three different kernels to generate an attention map. Compared to
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state-of-the-art models, the results show that TGA-MIL outperforms other
models in classification accuracy on different datasets. Moreover, we use
contrastive learning for feature extraction in MIL. We successfully apply it
to the MIL problem in the medical field;

2. We propose a novel concatenation of the representations from three kernels,
i.e., Laplace (LA), Radial Basis Function (RBF), and Inverse Multiquadric
(IM), to improve the representativeness of the features and optimize the
weight of the attention map, as well as to improve the learning ability of
the model for the properties of input data, which is finally manifested in the
improvement of the classification results on five different datasets. We show
that the concatenation of three different representations outperforms the
traditional method of using three different representations as base learners
for ensemble learning; and

3. We apply and optimize the gate attention-based MIL, and use the atten-
tion map in the model to interpret the training process for medical image
analysis.

2 Related Work

2.1 Multiple Instance Learning

In machine learning, MIL is a method evolved from supervised learning algo-
rithms, which defines a “bag” as a collection of multiple examples with a wide
range of applications. [13]. Dietterich et al. completed one of the seminal stud-
ies in this subject [1]. Typically, MIL-based frameworks utilize either mean
pooling or maximum pooling, with the latter being the more common. Both
operators are non-trainable, which limits their capacity. Although MIL pool-
ing operators with global adaptive parameters are widely used in many fields,
their flexibility is limited [13].

Over the last 20 years, MIL has been effectively used in various areas, such
as CAD [14], image classification [15], image segmentation [16], image annota-
tion [17], object tracking [18], human action recognition [19], and interaction
detection [20]. The challenge of diagnosing chronic obstructive pulmonary dis-
ease using breast CT also appears to have improved [21]. Jia et al. structured
this goal as a MIL issue and created a weakly labeled histopathology image
dataset to segment cancerous regions with weak supervision [22]. Most research
focuses on the bag-level MIL scenario since building the instance-level classi-
fication method requires the true label of an instance and considers learning
an optimal classification model for the target.

2.2 Deep MIL

Previous MIL research considered selected features to represent instances,
hence additional feature extraction was unnecessary. However, new research
into the use of fully-connected neural networks in MIL suggests that it may
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still be advantageous [23]. Similarly, combining MIL with deep learning in com-
puter vision enhances accuracy dramatically. Kraus et al. devised a method for
classifying and segmenting microscope images using the Noisy-AND pooling
function that combines deep CNNs with MIL [24]. Zhou et al. proposed using
simply image-level annotation to diagnose diabetic retinopathy using a MIL
approach with AlexNet [25]. However, in image classification, the reasonable
use of attention-based methods to combine deep learning with MIL is more
effective and illustrative [8].

2.3 Attention-based MIL

The purpose of embedding attention processes into deep learning is to mimic
human brain activity by concentrating on a few crucial regions. Attention is
responsible for several breakthroughs in natural language processing, notably
the Transformer architecture [26]. The attention-based deep learning frame-
work is a widely used embedding attention scheme. Pappas et al. sought to
employ a network instead of a linear regression model to compute the atten-
tion weights on instances [27]. Qi et al. sought to classify, and segment point
sets using the attention-based MIL operator [28]. Ilse et al. proposed two kinds
of attention-based MIL operators to enhance the performance of neural net-
works [8]. This proposal is shown to outperform the max and mean operators.
Furthermore, Han et al. proposed to apply the attention technique to 3D data
with automated instance generation. All these studies motivate us to further
research attention-based MIL.

2.4 Contrastive learning

Contrastive learning [29] is a self-supervised learning approach whose basic
idea is to make base models perform certain auxiliary tasks based on tem-
poral correspondence [30], and cross-modal consistency [31]. It achieves great
success and attention in the field of machine learning. Contrastive represen-
tation learning has played a significant role in natural language processing in
the past two decades. For example, in 2008, a two-class classification task with
contrastive representation learning [32], was successful in determining whether
and how the middle word of a context window is related to its context. More-
over, the Bidirectional Encoder Representation from Transformer (BERT) [26]
model utilizes contrastive learning to extract bidirectional word representa-
tions with the Transformer architecture’s decoder and distinguishes itself in
multiple downstream tasks with transfer learning. It demonstrates the unique
capability of contrastive learning to learn highly effective representations of
original images [29]. There are many ways to construct auxiliary tasks with
data augmentation, e.g., rotation prediction [33] and automatic colorization
[34]. These auxiliary tasks are built to train new weights of a base neural net-
work to extract features efficiently. The CT scan images of COVID-19 tend to
be limited because many CT scan datasets are not sharable due to privacy con-
cerns [35]. Besides, labeling images manually is time-consuming and requires
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a lot of experience, making it an uphill task. Because of this, a self-supervised
learning model is necessary in such cases. The application of self-supervised
learning can enable a base neural network to learn feature representations
more efficiently than those without it, allowing the size of datasets to be signif-
icantly increased by image augmentations. As a result, it can save much time
for researchers in annotating medical image datasets.

With the development of contrastive self-supervised learning, there are now
many popular methods, e.g., Momentum Contrastive (MoCo) [36], and Simple
Framework of Contrastive Learning (SimCLR) [37]. MoCo focuses on building
a consistent dictionary to speed up the learning process of contrastive learning.
The SimCLR has larger batch sizes and extensive data augmentation, further
facilitating the contrastive learning process [37]. Therefore, to explore how
contrastive learning can positively affect medical image analysis, we attempt
to apply this strategy to our medical image classification task. Moreover,
Chaitanya et al. proposed a novel contrastive learning framework by lever-
aging domain-specific and problem-specific cues for medical image analysis
[38]. They improved the performance of contrastive learning in dense predic-
tion issues. Wu et al. proposed a new contrastive learning framework with a
shared model by federated learning for medical image analysis [39]. The results
showed that feature exchanges could be used to improve the labeling efficiency
of medical images. Wang et al. sought to alleviate the limited labeling issue on
the medical image analysis, and they proposed an uncertainty weighted inte-
gration method incorporating contrastive learning to extract representations
[40]. Moreover, adversarial networks are also an alternative method to handle
this issue. For example, Wang et al. proposed a 3D auto-context-based local-
ity adaptive multi-modality generative adversarial networks for high quality
medical image analysis, and the results showed their method could boost the
training data with limited labels [41]. Luo et al. proposed adaptive rectifica-
tion adversarial networks on this field [42]. In our research, we choose SimCLR
to learn representations without manual labels.

3 Methodology

We propose a self-supervised image classification method. The whole frame-
work is given in Figure 1. In this section, to make this work clearer, we describe
related background formulas and introduce our model.

3.1 Multiple Instance Learning

The training set in MIL comprises multi-instance bags with classification
labels, with each bag containing some instances without classification labels.
A positive bag is defined as having at least one positive instance in a multi-
instance bag. A negative bag is defined as having no positive instance in a bag.
Multiple instance learning aims to build a multi-instance classifier by learn-
ing multi-instance bags with classification labels and applying the classifier to
predict unknown multi-instance bags. The data unit of the MIL data set is the
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Fig. 1: The framework of our TGA-MIL.

bag. Taking the binary classification of MIL as an example, we assume each
instance as x ∈ χ with a label y ∈ {0, 1} which is unknown to the learner. Let
B = {(x1, y1) , . . . , (xn, yn)} be a bag with label c(B) given by

c(B) =

{
0, iff

∑
yi = 0

1, otherwise
(1)

This formula is only applicable in the case of using instance-level classifiers
with a given label. However, each instance is a patch extracted from the orig-
inal image in medical images. In actual situations, there is no given label for
each instance. It is difficult to train a model that only learns to optimize the
target based on the largest instance label in the real world. Since the labels of
instances can be unknown in a weakly supervised task, there is a problem that
the instance-level classifier may be undertrained. This leads to an increase in
the number of misclassified cases.

The most common MIL approach is the embedding-based approach, which
involves three steps in classifying a bag of instances [8]. First, obtaining a
function f to extract the representations of instances. Second, designing a sym-
metric function to combine transformed instances. Finally, using a function g
to modify combined instances. However, this approach is usually difficult to
obtain key instances in improving the classification performance of the clas-
sifier. In this regard, an additional instance-level approach is introduced to
provide an estimated score for obtaining key instances.
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3.2 Self-training the CNN Feature Extractor Using
Contrastive Learning

Since MIL is a weakly supervised problem, we use self-supervised contrastive
learning to learn the feature extractor f . Specifically, we consider SimCLR from
[37], a state-of-the-art self-supervised learning framework that learns robust
representations without manual labels. SimCLR is a strategy whose auxiliary
task mainly focuses on learning the efficient representations depending on the
optimization of the reciprocal information between the extracted features from
different random image augmentations of a single object. Our model considers
image cropping, flipping, and Gaussian noise as image augmentation methods.
The training process guarantees consistency between sub-images from the same
image. Feature extractors obtain the representation of training samples for
further classification tasks.

3.3 Attention-based MIL Pooling

Ilse et al. presented kinds of MIL pooling inspired by the instance-level
approach to modify the existing embedding-level approach [8]. Before intro-
ducing our innovation part, we briefly describe the two schemes proposed in
Ilse’s article to illustrate our scheme better.

3.3.1 Attention Pooling

Attention-based MIL is an embedding-based MIL approach. It starts by map-
ping instances from a given bag X into a low-dimensional space to obtain
their embeddings H = {h1, . . . ,hk} ,hi ∈ RM . It performs the following MIL
pooling to obtain a representation of the whole bag:

hbag =

k∑
i=1

aihi, (2)

where:

ak =
exp

{
w⊤ tanh

(
Vh⊤

k

)}
∑k

j=1 exp
{
w⊤ tanh

(
Vh⊤

j

)} , (3)

where w ∈ RL×1 and V ∈ RL×M are parameters and the tanh(·) is used to
prevent the gradient from exploding. This module can be used to obtain the
similarity between instances. Moreover, the sum of the attention weight ai is
1, and a bigger weight means a more significant impact of the instance on the
classification.
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3.3.2 Gated Attention Pooling

In addition, since tanh(x) is approximately linear at x ∈ [−1, 1], its ability to
learn complex relationships is limited, leading to a decrease in the representa-
tiveness of the extracted features. Therefore, Ilse et al. proposed to additionally
use the gating mechanism together with tanh(·) non-linearity that yields [8]:

ak =
exp

{
w⊤

(
tanh

(
Vh⊤

k

)
⊙ sigm

(
Uh⊤

k

))}
∑K

j=1 exp
{
w⊤

(
tanh

(
Vh⊤

j

)
⊙ sigm

(
Uh⊤

j

))} , (4)

where U ∈ RL×M are parameters, ⊙ is an element-wise multiplication
and sigm(·) is the sigmoid function. Compared with tanh(·), gated atten-
tion introduces nonlinear characteristics to overcome the limitations of linear
equations.

The basic idea of attention-based MIL consists of four steps. First, CNN is
used to obtain representations from each bag. Second, the attention or gated
attention mechanism is used to produce the attention weights by the repre-
sentations. Third, attention-based MIL pooling is used to obtain a vector for
each bag. Finally, fully-connected layers are used to classify the vector for the
results.

3.4 Gated Attention-based MIL Using Three Kernels

Inspired by the successful use of kernel function in SVM, Tsai et al. successfully
applied an RBF-based formulation for the attention mechanism in Transformer
on translation field [43]. Moreover, Kim et al. proposed LA kernel instead of
the dot product in the image processing field [44]. However, the instability of
the results makes the overall performance inferior to the dot product. Although
they are either not used in the image domain or the results are not satisfactory,
their concept makes us think that a different kernel function can be used
instead of the dot product in the gated attention-based pooling, i.e., ⊙ in
Equation 4. In our study, we use the previously described RBF and LA kernels,
but also discuss the IM kernel that is widely used in SVM. Their formulas are
as follows.

LA : k(v, u) = −∥v − u∥1 (5)

RBF : k(v, u) = exp

(
−
∥v − u∥22

2σ2

)
(6)

IM : k(v, u) =
1√

∥v − u∥2 + c2
(7)

where σ and c are trainable parameters. RBF can approximate any nonlinear
function with arbitrary precision and has global approximation capability. The
convergence speed is fast, and the learning generalization ability of the corre-
sponding attention map is improved. However, since the performance of RBF
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depends on the choice of the center of the data points, it leads to the instability
of performance. LA kernel overcomes the limitations of the central dependency
issue in RBF kernel. However, because it is a parameter-free kernel, we can-
not fine-tune it during the training process. IM kernel is an improved version
of RBF, which is used to neutralize the unstable nature of RBF. In summary,
dot-product attention displays non-smooth predictions. We use triple kernels
to help smooth out the interpolations and combine their strengths to improve
the performance of our model.

We consider the instability of the kernel function in [44] and the problem
of the limited amount of medical image data. Therefore, unlike Equation 2,
we concatenate and transpose ak generated by the three kernels. Afterward,
we concatenate the three identical hk and feed them to gated attention-based
MIL pooling.

This method is similar to ensemble learning, so we compare it to the typical
stacking method in subsequent comparative experiments, which combines data
sets with multiple base learners and generates a new meta-model [45]. The
specific process of stacking is used with 3 base learners, i.e., gated attention-
based MIL with RBF, IM, and LA kernel, respectively.

4 Experiments

In our experiments, we evaluate the efficacy of our method using many dif-
ferent datasets as follows. Five classical MIL benchmark datasets, Musk1,
Musk2, Fox, Tiger, Elephant [1]; an MNIST-based image dataset [46]; three
medical datasets, USBC breast cancer [47], colon cancer [48], and DDSM [49].
We employ a standard assessment approach, 10-fold cross-validation, and five
repeats in Musk1, Musk2, and the MNIST-based dataset to achieve a fair com-
parison. For consistency on the DDSM, we use the same experimental method
from [50]. To compare the performance between different methods, we use
metrics which includes the classification accuracy, precision, recall, F-score,
and AUC. For computations, our models are implemented by Tensorflow and
trained on the GTX1080Ti.

4.1 Musk1, Musk2, Fox, Tiger, and Elephant

4.1.1 Experimental Settings

In the first experiments, we will test our method against other deep MIL
methods on five classical benchmark datasets, i.e., Musk1, Musk2, Fox, Tiger,
and Elephant. Musk1 and Musk2 are used to identify whether a medication
molecule will attach to a target protein. A positive molecule has at least one
form that can bind well, whereas a negative molecule has no shapes that
can bind well. In MIL contexts, this problem may be expressed fairly natu-
rally: each molecule would be a bag, and the possible conformations would be
instances in that bag [1]. Fox, Tiger, and Elephant contain features extracted
from corresponding animal images. These datasets are made up of extracted
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feature vectors from instances and do not need the learning of a feature extrac-
tor. Because the characteristics have already been established, the experiment
involves directly feeding the feature to three kernel functions for predicting
attention maps without contrastive learning.

4.1.2 Results

Experiments are repeated five times, each using 10-fold cross-validation to
compare our TGA-MIL to other current designs on the MIL issue, as given
in Table 1. The results show that our TGA-MIL surpasses the state-of-the-art
models on four datasets except for Fox. Meanwhile, on the Fox dataset, our
TGA-MIL also obtains the fourth-highest results. This shows that our method
is more efficient.

Table 1: Results on classical MIL datasets. Experiments were repeated five
times, with the average classification accuracy (±standard error) provided.

The best results for each dataset are highlighted in bold.
Methods Musk1 Musk2 Fox Tiger Elephant

mi-Net [51] 0.889± 0.039 0.858± 0.049 0.613± 0.035 0.824± 0.034 0.858± 0.037
MI-Net [51] 0.887± 0.041 0.859± 0.046 0.622± 0.038 0.830± 0.032 0.862± 0.034

MI-Net with DS [51] 0.894± 0.042 0.874± 0.043 0.630± 0.037 0.845± 0.039 0.872± 0.032
MI-Net with RC [51] 0.898± 0.043 0.873± 0.044 0.619± 0.047 0.836± 0.037 0.873± 0.044

Attention [8] 0.892± 0.040 0.858± 0.048 0.615± 0.043 0.839± 0.022 0.868± 0.022
Gated Attention [8] 0.900± 0.050 0.863± 0.042 0.603± 0.029 0.845± 0.018 0.857± 0.027
mi-Net Attention [52] 0.900± 0.063 0.870± 0.048 0.630± 0.026 0.845± 0.028 0.865± 0.024

ELDB [53] 0.902± 0.016 0.857± 0.039 0.648± 0.014 0.767± 0.013 0.843± 0.012
TGA-MIL (ours) 0.910± 0.033 0.881± 0.040 0.628± 0.020 0.846± 0.015 0.875± 0.020

4.2 MINST-based Dataset

4.2.1 Experimental Settings

(a) (b) (c)

Fig. 2: Sample images that are easily misclassified (a) “9”, (b) “7”, (c) “4”.



Springer Nature 2021 LATEX template

12 TGA-MIL

Representations in the classical MIL benchmark datasets have been
pre-extracted, so there are limitations in the measurement of classification per-
formance. To demonstrate the capacity of our approach in an experiment that
is both classical and more challenging, we turn our attention to the MNIST
dataset in the second experiment. To fairly compare the capabilities of our
TGA-MIL method with the original attention-based MIL methods, we carry
out the same processing as [8] on the MNIST dataset. As shown in Figure 2,
the MNIST dataset is easy to misclassify the images of “9”, “7”, and “4”. A
bag is created by selecting a random number of 28× 28 grayscale images from
the MNIST dataset. We define positive bag to be one that contains at least
one image “9”. In the test set, we use a fixed number of 100 bags. For compar-
ison, we follow the CNN architecture according to [8], called LeNet 5 without
contrastive learning [54]. The optimal hyperparameters are shown in Table 2.
We also apply data augmentation, e.g., random rotations, random cropping,
and horizontal and vertical flipping. In the experiments, we design a random
positive number with 10 as the mean and 1 as the variance for each bag. The
integer closest to this random number is the number of instances in the bag.
Besides, we use varying numbers of training bags, i.e., 50, 100, 150, 200, 250,
300. Using these settings, we test how varying the number of training bags and
instances will affect MIL models. Since our training data is randomly selected,
it is easy to produce a high degree of imbalance between positive and nega-
tive samples. Therefore, in this experiment, we only use AUC, which is less
sensitive to the imbalance of positive and negative samples, to compare the
classification performance between different models.

Table 2: The hyperparameters for MNIST-based dataset

Optimizer β1, β2 Learning rate Maximum of Epochs Selection criteria
Adam 0.9, 0.999 0.0001 50 lowest loss

4.2.2 Results

Table 3: MNIST-based dataset with a different number of training bags.
Experiments were repeated five times, with the average AUC (±standard
error) provided. The best results for different numbers of training bags are

highlighted in bold.
Number of

Training bags
50 100 150 200 250 300

Max-pooling 0.531± 0.063 0.701± 0.092 0.940± 0.003 0.957± 0.001 0.970± 0.001 0.972± 0.001
Mean-pooling 0.611± 0.053 0.627± 0.083 0.925± 0.007 0.964± 0.004 0.969± 0.001 0.970± 0.001
Attention [8] 0.727± 0.043 0.901± 0.005 0.955± 0.006 0.970± 0.002 0.969± 0.001 0.976± 0.001

Gated Attention [8] 0.733± 0.041 0.906± 0.008 0.945± 0.001 0.974± 0.002 0.977± 0.001 0.975± 0.002
TGA-MIL (ours) 0.753± 0.034 0.900± 0.020 0.950± 0.001 0.975± 0.001 0.980± 0.002 0.983± 0.002

The results of AUC for MNIST-based dataset are presented in Figure 3
and Table 3. The findings of the experiment are given as follows,
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Fig. 3: Results for MNIST-based dataset with different number of training
bags.

1. When the number of training sets is small (only 50 bags), the stability of all
methods is relatively low (the variance is the largest). Our method increases
the number and stability of representations through different kernels, which
increases the AUC performance by at least 2% compared to other methods
and significantly reduces the variance;

2. When the number of data set is moderate (100 and 150), our method does
not obtain the best AUC results, but the gap with the best method is about
0.5%;

3. When the number of data sets is relatively large (200, 250, and 300 bags),
the performance of all methods on the MNIST-based dataset tends to
be stable, and the results are close. This is because the data set is rela-
tively basic and not challenging. However, our method can further improve
the maximum performance of the original method through three different
kernels and obtain the highest AUC; and

4. Figure 4 gives the difference between our TGA-MIL and the attention
weights generated by attention-based MIL and gated attention-based MIL.
We can obtain that when “4”, “7”, “9” appears simultaneously in our
method, the attention weights corresponding to “9” are enlarged, while
the attention weights corresponding to “4” and “7” are relatively reduced.
When there are only “7”, its corresponding attention weights are still stable
and will not be ignored by the model.
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4.3 USBC Breast Cancer and Colon Cancer Datasets

4.3.1 Experimental Settings

The automatic identification of malignant areas in entire images stained with
Hematoxylin and Eosin (H&E) is a popular research task. Current supervised
methods utilize pixel-level annotations [55]. However, the preparation of large
amounts of H&E data requires pathologists to spend much time, which is
difficult to achieve in real life. Therefore, solutions using WSI will reduce the
workload of pathologists. In this experiment, we test our method in classifying
two weakly-labeled histopathology images of the breast cancer dataset from
USBC [47] and the colon cancer dataset [48]. The description of each dataset
is given as follows:

The USBC breast cancer dataset contains 58 H&E images with weakly
labels, each measuring 896× 768. If a photo contains breast cancer cells, it
is classified as malignant; otherwise, it is classified as benign. Every image is
divided into 32× 32 patches and 672 patches per bag. We remove the patch
which has 75% or more white pixels.
Colon cancer dataset contains 100 H&E images. The images are derived
from various tissue appearances in both normal and cancerous areas. The
majority of nuclei in each cell were indicated in each picture. There are four
classes of nuclei in the dataset, including epithelial, inflammatory, fibroblast,
and miscellaneous nuclei. A bag consists of patches with the resolution of
27×27. Furthermore, epithelial cell tagging is important from a therapeutic
standpoint since epithelial cells are the source of colon cancer. Therefore, if
a bag includes one or more epithelial nuclei, it is assigned a positive label.

We train the model weights on both datasets using the Adam optimizer
with a constant learning rate of 0.0001. For MIL model training, a mini-batch
size of 1 is used. SimCLR is used to train the feature extractor using patches
derived from the training sets of the datasets. We utilize the Adam opti-
mizer for SimCLR, with a min-batch size of 128 and an initial learning rate
of 0.0001. ResNet is the CNN backbone used in MIL models and SimCLR.
Specifically, for SimCLR, we use data augmentations, including random crop-
ping, horizontal/vertical flipping, and random zoom. Warmup, fine-tuning,
and end-to-end training take 60, 20, and 20 epochs, respectively. 10-fold cross-
validation with one validation fold and one test fold is repeated five times. We
have designed several experimental models with corresponding abbreviations
for comparisons, as given in Table 4.

4.3.2 Results

We present results in Table 5 and Table 6 for USBC breast and colon cancer,
respectively. The findings of two histological datasets are as follows,
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Abbreviations Experimental design
GA-RBF Gated attention-based MIL with RBF kernel
GA-IM Gated attention-based MIL with IM kernel
GA-LA Gated attention-based MIL with LA kernel
S-AGR Stacking with attention, gated attention and GA-RBF
S-AGI Stacking with attention, gated attention and GA-IM
S-AGL Stacking with attention, gated attention and GA-LA
S-RIL Stacking with GA-RBF, GA-IM, and GA-LA

Table 4: The description of abbreviations with corresponding experimental
design.

1. Our method obtain the highest value in comparing the five metrics of the
two data sets, especially for the two most important indicators for medi-
cal images, accuracy, and recall. These two indicators fully show that our
algorithm can still achieve higher performance than other algorithms on
classical MIL datasets and data in the medical field;

2. We achieve at least 1.0% improvement in classification accuracy compared
to the baseline method on the USBC breast cancer. In addition, compared to
the other experimental group we designed, at least an improvement of 0.6%
is achieved. In the comparative experiment, one kernel function is improved
by about 1% relative to the baseline model. This is enough to demonstrate
that the kernel function in our design is conducive to improving the selection
effect of the attention map, and the participation of SimCLR and concate-
nation methods has better performance than the general stacking method;
and

3. The localization performance indicates the capability of different models
to delineate positive instances. Heat maps of different models from the
USBC breast dataset are illustrated in Figure 5. It can be seen in the figure
that compared to the two baseline methods, the heat map generated by
our TGA-MIL increases the weights of the corresponding instances in the
ground truth and significantly reduces the weights corresponding to the
external non-key instances. It is sufficient to demonstrate that our model
can enable the model to pay more attention to the key instances, learn
more realistic and effective representations, and improve classification per-
formance. This approach is very conducive to reducing the number of false
negatives and can also be used to explain why our method achieves the
highest recall.
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(a) (b)

(c) (d)

(e)

Fig. 5: An example of different methods generates a heat map comparison
based on the attention map for USBC breast cancer dataset. Note that the
attention weight is normalized to [0,1] and multiplied by each instance to

produce the corresponding heat map. (a) Original image from USBC breast
cancer dataset, (b) Ground truth instances from given labels, (c) Heat map
from attention-based MIL, (d) Heat map from gate attention-based MIL, (e)

Heat map from TGA-MIL.

4.3.3 Ablation Study

In our ablation study, we study the impact of using different numbers of kernels
on the performance of these two datasets. As Table 7 demonstrates, the per-
formance of three kernels outperforms others on three metrics, i.e., accuracy,
F-score, and AUC. Meanwhile, all metrics on three kernels obtain the lowest
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standard errors. Therefore, three kernels are the most stable model with the
best performance. In Table 8, the model of three kernels performs best on all
metrics. As the results show, three kernels would be the most suitable model.
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4.4 DDSM

4.4.1 Experimental Settings

In this experiment, we use a public dataset called DDSM [49]. This pub-
lic dataset consists of 2620 digitized film-screen screening mammograms
with pixel-level ground truth annotation for tumors [49]. Each mammogram
includes two standard projections, the CC view and the mediolateral oblique
MLO view, along with localization information. Specialists supplied the local-
ization information stored in DDSM. We use the mammogram images from
Lumisys scanner, which has the highest resolution in DDSM as our whole
dataset. The subset of DDSM has 666 images in the benign class and 657
images in the malignant class [50]. In the experiment, without cross-validation,
we randomly split the whole dataset into a training set, a validation set, and
a test set according to proportions of 80%, 10%, and 10%, respectively. For
this experiment, each image from DDSM is cropped into 224 × 224 instances
without overlapping to form a bag. The hyperparameters of base model are
shown in Table 9. The SimCLR is also used for our TGA-MIL with the initial
parameters for feature extraction by pre-trained on ImageNet.

Table 9: The hyperparameters for DDSM dataset

Optimizer β1, β2 Learning rate Maximum of Epochs Batch size
Adam 0.9, 0.999 0.0001 50 1 (bag)

4.4.2 Results

The sensitivity of each method is given in Table 10. It is not difficult to see
that the previous algorithm has been outdated. Compared to the previously
proposed model, the original two attention-based MIL algorithms or our newly
proposed TGA-MIL algorithm have made considerable progress. Even if the
previous algorithm label is instance-based, and we only have a bag-based label,
our new algorithm still increases sensitivity by 1.1%. Moreover, unlike previ-
ous algorithms, TGA-MIL can provide more attention to the key instances for
the model, thereby reducing the time consumption while improving the per-
formance of the algorithm in the sliding windows method. In Figure 6, we can
see that the external boundary can be ignored without manually removing the
black instance, and the areas that may have cancerous cells are automatically
highlighted.
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Table 10: The overall detection performance (malignant vs. benign) of our
method and other state-of-the-art methods. The best result is highlighted in

bold.

Algorithms Sensitivity
K-means and SVM [56] 83%

Cascaded Deep Learning and Random Forests [57] 77.2%
ANN [58] 75.9%

Feed Forward Neural Network [59] 74.6%
Extreme Learning Machine [60] 81.8%

Faster-RCNN [61] 71.2%
CNN-based Framework [50] 85.2%

Attention [8] 86.2%
Gated Attention [8] 86.4%
mi-Net Attention [52] 86.7%

ELDB [53] 85.8%
TGA-MIL (ours) 87.8%

(a) (b)

Fig. 6: An example of DDSM dataset with corresponding heat map by our
TGA-MIL. Note that the attention weight is normalized to [0,1] and

multiplied by each instance for producing the correspond heat map. (a)
Original image from DDSM dataset, the ground truth is surrounded by the

red circle, (b) Heat map from TGA-MIL.

5 Conclusions and Future Work

This paper presents a novel MIL approach for medical image analysis, called
triple-kernel gated attention-based multiple instance learning with contrastive
learning (TGA-MIL). In contrast to gated attention-based MIL approach, it
use SimCLR for initial CNN parameters instead of pre-trained from ImageNet
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and concatenate three different kernels, LA, RBF, and IM, for extracting rep-
resentations. The experiments on nine datasets (Musk1, Musk2, Fox, Tiger,
Elephant, MNIST-based dataset, USBC breast cancer dataset, colon cancer
dataset, DDSM dataset) confirm that our method is on par or outperforms
the current state-of-the-art methodology based on various metrics. In contrast,
our method uses the attention map to focus on more representative parts, thus
solving the problem of insufficient labels. This overcomes the limitation that
the whole image cannot be used as input data. Also, the performance using the
whole image is close to that of using only the ROI, which illustrates the prac-
ticality of our method. Finally, unlike previous algorithms like black boxes,
TGA-MIL can provide more attention to the key instances for the model,
thereby reducing the time consumption while improving the performance of
the algorithm in the sliding windows method.

Future research can be carried out in two aspects. First, we applied the
method of contrastive learning to perform self-supervised learning to overcome
the adverse effects of unlabeled instances. However, we directly use the Sim-
CLR method in this part. In the future, we will design contrastive learning
that is more in line with medical images to replace SimCLR and improve the
practicality of the model in the medical field. Second, we use the heat map gen-
erated according to the attention weight to explain which parts of the model
will be more concentrated when used to understand the progress of the model.
However, for medical images, there may be further developed, such as how the
representation generated by the feature extractor affects the subsequent for-
mation so that the doctor can better understand the internal use mechanism
of the model when using it.
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